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Abstract

Sexually reproducing pathogens such as Cyclospora cayetanensis often produce genetically 

heterogeneous infections where the number of unique sequence types detected at any given locus 

varies depending on which locus is sequenced. The genotypes assigned to these infections quickly 

become complex when additional loci are analyzed. This genetic heterogeneity confounds the 

utility of traditional sequence-typing and phylogenetic approaches for aiding epidemiological 
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trace-back, and requires new methods to address this complexity. Here, we describe an ensemble 

of two similarity-based classification algorithms, including a Bayesian and heuristic component 

that infer the relatedness of C. cayetanensis infections. The ensemble requires a set of haplotypes 

as input and assigns arbitrary distances to specimen pairs reflecting their most likely relationships. 

The approach was applied to data generated from a test cohort of 88 human fecal specimens 

containing C. cayetanensis, including 30 from patients whose infections were associated with 

epidemiologically defined outbreak clusters of cyclosporiasis. The ensemble assigned specimens 

to plausible clusters of genetically related infections despite their complex haplotype composition. 

These relationships were corroborated by a significant number of epidemiological linkages 

(P<0.0001) suggesting the ensemble’s utility for aiding epidemiological trace-back investigations 

of cyclosporiasis.
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INTRODUCTION

Cyclosporiasis is a foodborne diarrheal disease caused by the human intestinal pathogen 

Cyclospora cayetanensis. Although the parasite is endemic to tropical and sub-tropical 

regions, seasonal outbreaks of cyclosporiasis often occur in developed temperate countries 

such as the United States (U.S.) and Canada. In the past, outbreaks occurring in the U.S. and 

Canada have been associated with imported fresh produce items including berries, herbs, 

vegetables and salads, imported from endemic countries (Abanyie et al., 2015; Ortega & 

Sanchez, 2010; Sim et al., 2017; Whitfield et al., 2017). Difficulties are often encountered in 

identifying vehicles of C. cayetanensis infection in the U.S., as many cases are 

geographically dispersed and seemingly sporadic. Cases that result from a single imported 

food source may lack a common source of exposure (e.g., a single restaurant or event), and 

thus not be readily epidemiologically linked. Additionally, detecting the parasite on or in 

implicated food items has rarely been successful. Due to these challenges, the development 

of molecular typing tools for C. cayetanensis is a major priority for U.S. public health 

agencies (Abanyie et al., 2015; Hall et al., 2011).

Whole genome sequencing is a routine practice for supporting epidemiological 

investigations of outbreaks caused by bacterial pathogens in some public health settings 

(Brown et al., 2018; Kwong et al., 2016; Quainoo et al., 2017) (e.g. PulseNet (CDC, 

2017c)). These investigations involve examination of whole genome SNP profiles that 

distinguish related and unrelated isolates, facilitating linkage to a common source or 

exposure event (Kanagarajah et al., 2018). This procedure is made feasible for routine 

applications by the comparatively small genome size of many bacterial pathogens i.e. from 

~3–6 megabases (MB), and the ability to culture them directly from clinical specimens 

enabling enrichment of their genetic material. By comparison, the C. cayetanensis genome is 

approximately 10-fold larger (~44 MB (Qvarnstrom et al., 2015)), and methods for its 

cultivation have not been described. Fewer than 105 parasites are typically present in 

diagnostic human fecal specimens yielding only picogram amounts of C. cayetanensis DNA 
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(Nascimento et al., 2016). Therefore, parasite enrichment is required prior to DNA 

extraction and genome sequencing. Humans are the only known host of C. cayetanensis and 

previous attempts to develop animal models of cyclosporiasis have failed (Eberhard et al., 
2000). As a result, animal bioassay is not a viable approach for C. cayetanensis enrichment 

even if the high costs and time associated with such an undertaking were of no consequence 

in a routine setting. Due to these obstacles, multi-locus sequence typing (MLST) is currently 

the most feasible option for C. cayetanensis genotyping. However, given the genetic 

heterogeneity of C. cayetanensis infections, analysis of a MLST dataset generated for this 

pathogen requires the use of specialized analysis methods or indices that can accommodate 

this complexity.

While there is an increasing need for robust C. cayetanensis typing tools, the genetic 

complexity of C. cayetanensis infections has been a challenge for their development. Stool 

specimens from cyclosporiasis patients may contain one, two or more sequence types for a 

given locus depending on the locus sequenced. These datasets become increasingly complex 

as additional loci are examined and the number of permutations increases. This confounds 

phylogenetic inference as a means of assisting epidemiological case-linkage. The field of 

molecular epidemiology establishes that pathogens linked to a common source are usually 

genetically related. While this appears to be the case for C. cayetanensis, due to sexual re-

assortment of this pathogens’ genome within the gastrointestinal tract of its human host, no 

two infections are completely alike. This same phenomenon is not encountered in asexually 

reproducing prokaryotes and viruses that typically present as clonal populations in outbreak 

scenarios (Tibayrenc & Ayala, 2012), a feature exquisitely suited to trace-back and case-

linkage investigations aided by phylogenetic approaches (Romero-Severson et al., 2016).

In the field of population genetics, fixation indices (F statistics) such as FST are commonly 

used to define the genetic structure of sexually reproducing populations (Nagylaki, 1998). 

This index is based largely on haplotype frequencies and is considered a useful indicator of 

population differentiation. FST has been applied to population studies of various 

apicomplexan parasites (Feng et al., 2013; Lumkul et al., 2018; Muwanika et al., 2016) and 

is used as a measure of distance, enabling comparison of populations in a pairwise fashion 

where the larger the FST value, the more genetically isolated the two populations are. In the 

context of epidemiological case linkage the FST statistic is not always applicable as it 

requires that the populations undergoing comparison are already defined by a tangible 

characteristic such as their geographical distribution. While it is not inconceivable that an 

index based on haplotype frequency might possess utility for assisting epidemiological case-

linkage, information on how the test populations are to be defined is often absent or unclear 

in the context of U.S. cyclosporiasis outbreaks. As such, indices like FST cannot be used 

directly. Another drawback of using fixation indices in this context is that their accuracy 

relies on the allele frequencies in a population. FST assesses whether two populations 

possess an expected amount of heterozygosity or if there is a reduction in heterozygosity 

based on the Hardy–Weinberg expectation (Crow, 1988). Because a single C. cayetanensis 
infection represents a sexually reproducing population of its own, and given that these 

infections may involve one, two, three or more sequence types at various loci, the true 

frequency of alleles (or sequence types) cannot be determined from a standard MLST 

Barratt et al. Page 3

Parasitology. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dataset, yet these frequencies are required for calculation of true Hardy-Weinberg 

proportions.

Bioinformatic approaches that support the analysis of complex C. cayetanensis MLST 

datasets must account for these limitations, yet provide a robust estimation of the most 

plausible genetic relationships. Additionally, given the unique challenges discussed above, 

development of novel methods for analysis of this data is warranted. We describe an 

ensemble of two similarity-based classification algorithms including a Bayesian and 

heuristic component, for inferring genetic relationships between C. cayetanensis infections. 

As input, the ensemble requires a set of haplotypes from each specimen enriched by PCR 

and then Sanger sequenced. The algorithms’ design includes aspects of Mendelian genetics, 

information theory, frequentist probabilities, and Bayesian probabilities, and it generates a 

set of pairwise distances that reflect the most plausible relationships between the specimens 

in the study cohort. These distances are then clustered for downstream interpretation.

To assess the performance of our approach we selected three C. cayetanensis genotyping 

markers, including two nuclear loci and one mitochondrial locus and Sanger sequenced them 

from 88 human fecal specimens containing C. cayetanensis. This dataset included 30 

specimens from people whose infections had been epidemiologically linked to U.S. 

outbreaks of cyclosporiasis. Specimens from geographically and temporally diverse cases of 

cyclosporiasis were also analyzed, including one specimen from China that served as an 

outlier for delineating clusters. Manual examination of the haplotype composition of 

specimens that were linked using the ensemble confirmed that the distances generated result 

in the assignment of plausible genetic linkages. On comparing the links assigned using 

epidemiological methods to those assigned using our method, the concordance between the 

two approaches was statistically significant, suggesting the utility of this approach for 

assisting epidemiological trace-back and case-linkage investigations of cyclosporiasis.

MATERIALS AND METHODS

Epidemiologic investigations and classification

Fecal specimens were categorized as either associated with outbreaks or as seemingly 

sporadic cases of cyclosporiasis identified in the U.S. or in other countries. The 

categorization of specimens as associated with a U.S. outbreak was based on linkages 

established using current epidemiological approaches including, but not limited to, 

investigation of temporospatial links, shared exposures to stores or restaurants, distribution 

supply chains, and food production facilities (CDC, 2017a; CDC, 2017b). Outbreaks were 

defined as at least two epidemiologically linked cases (e.g., a cluster of cyclosporiasis cases 

linked to a restaurant, supplier, store and/or event). A temporospatial cluster was defined as 

cases occurring in the same geographical area (e.g., in the same community or town) where 

illness onset dates fell within approximately 15 days of each other. Epidemiologic evidence 

for linking cases in persons with common exposures (e.g., restaurant, grocery store, and/or 

social events) is typically stronger than for temporospatial clusters. An international travel-

associated case was defined as a case in a person who spent at least one day during their 

pertinent incubation period (i.e., 14 days before illness onset) outside of the U.S.A.

Barratt et al. Page 4

Parasitology. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNA Extraction from Feces and Genome Sequencing

Fecal specimens were washed free of preservative where necessary, first by centrifugation in 

a Sorvall Legend Micro 17R centrifuge at maximum speed (13300 RPM) and then decanting 

the supernatant. Approximately 500μL of PBS was added to each fecal specimen with 

agitation, until a thick slurry was formed. The Universal Nucleic Acid Extraction (UNEX) 

method described by Shields et al. (Shields et al., 2013) was followed with the adjustments 

described by Qvarnstrom et al. (Qvarnstrom et al., 2017). As an internal control for this 

workflow, repeat fecal specimens (N=3) from each of two cyclosporiasis patients (patients A 

and B), were extracted alongside batches of other specimens for downstream typing. 

Extractions were performed on 88 human fecal specimens. To identify genotyping markers, 

11 of these 88 human fecal specimens were selected for genome sequencing using methods 

previously described (Qvarnstrom et al., 2018). These 11 specimens came from patients 

representing temporally and geographically diverse cases of cyclosporiasis (Table 1), and 

were selected for whole genome sequencing (WGS) due to the presence of relatively high 

numbers of oocysts (estimated by microscopy), which is a prerequisite for successful WGS. 

Extraction of DNA from purified C. cayetanensis oocysts and preparation for WGS using 

the Ovation Ultralow Library System (Nugen Technologies Inc.) was performed as 

previously described (Nascimento et al., 2016; Qvarnstrom et al., 2018). The resulting 

libraries were sequenced using the MiSeq Reagent Kit v2 (500 cycles) on the Illumina 

MiSeq system.

Marker Selection and Polymerase Chain Reaction

A detailed description of the workflow designed for selecting suitable MLST markers is 

shown in Figure 1. Once candidate markers were identified, the possibility that multiple 

copies of these loci (i.e., multiple paralogues) exist within the haploid C. cayetanensis 
genome was excluded by examination of the draft genomes generated here using BLAST 

and discontiguous BLAST searches, with the candidate MLST loci used as query sequences. 

Ruling out multiple paralogues in the haploid genome would ensure that if mixed Sanger 

chromatograms were encountered, they would indicate the presence of multiple haploid 

genomes in the specimen that possess different haplotypes (i.e., true heterozygosity) as 

opposed to the presence of multiple paralogues that differ slightly in sequence occurring in 

the same haploid genome. PCR primers were designed to amplify three SNP-dense loci 

identified using this workflow, which included two nuclear (Nu) loci and one mitochondrial 

(Mt) locus (Table 1). The Mt locus was amplified using reagents provided in the HotStarTaq 

Master Mix Kit (Qiagen). Amplification was performed with an initial melt at 95°C for 15 

min, followed by 35 cycles of 94°C for 30 sec, annealing at 55°C for 30 sec; and extension 

at 72°C for 45 sec, concluding with a final extension step of 72°C for 10 min and holding at 

4°C. Each nuclear locus was amplified using reagents accompanying the Q5 High-Fidelity 

DNA Polymerase (New England BioLabs). For the 360i2 locus, amplification was 

performed with an initial melt of 98°C for 2 min, followed by 35 cycles of 98°C for 15 sec; 

67°C for 30 sec and 72°C for 45 sec. This was followed by a final extension step of 72°C for 

5 min and holding at 4°C. For the 378 locus, amplification was performed with an initial 

melt of 98°C for 2 min, followed by 35 cycles of 98°C for 15 sec; 71°C for 30 sec and 65°C 

for 45 sec. This was followed by a final extension step of 65°C for 5 min and holding at 4°C. 

All reactions contained 10 picomoles of forward and reverse primer and 1 μL of template 
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DNA, in a total reaction volume of 25 μL. Amplicons were subjected to agarose gel 

electrophoresis on 1.5% gels, followed by staining with ethidium bromide for visualization 

under UV light.

Sanger Sequencing

The PCR products were purified using a Monarch® PCR & DNA Cleanup Kit (New 

England Biolabs, Ipswich, MA) and sequenced using the BigDye Terminator V3.1 Cycle 

Sequencing Kit (Applied Biosystems, Foster City, CA). The DyeEx 2.0 Spin Kit (Qiagen, 

Hilden, Germany) was used to remove the unincorporated dyes (Qiagen, Hilden, Germany). 

All PCR products were sequenced in both directions on an ABI PRISM® 3100 Genetic 

Analyzer (AppliedBiosystems, Foster City, CA). The ABI files were imported into Geneious 

v10 (Kearse et al., 2012) for quality trimming, generation of consensus sequences, and 

sequence alignments. Heterozygous sequences were identified with the aid of the Geneious 

Heterozygote Plugin (Version: 1.5.1), using a peak similarity threshold of 25% followed by 

confirmation by manual inspection. Finished sequences were aligned and exported in .fasta 

format for downstream analysis. Heterozygous sequences were unphased using the PHASE 

algorithm in DnaSP v6.10.01, with default parameters (Rozas et al., 2017). Sequences 

containing more than two haplotypes were identified when automatic unphasing indicated 

that certain specimens shared no genetic relationship with any other specimen in the dataset. 

Because this was considered highly unlikely, their chromatograms and consensus sequences 

were re-inspected and unphased manually where necessary, to identify the underlying 

haplotypes.

Algorithms and clustering

Detailed descriptions of the Bayesian and heuristic similarity-based classification algorithms 

underpinning the ensemble are provided in Supplemental File S1. The heuristic algorithm is 

of novel design while the Bayesian algorithm was modified from a previously described 

algorithm for comparison of multi-clonal P. falciparum infections (Plucinski et al., 2015). 

Pairwise distances were calculated using both algorithms, the values were normalized, and 

the mean of these two datasets was taken. The distances were clustered using agglomerative 

nesting (AGNES), executed in the R package ‘cluster’, version 2.0.6 (Maechler, 2011). 

AGNES was performed using Manhattan distances and the Ward clustering method (Strauss 

& von Maltitz, 2017) with all other parameters set to default. The ‘as.hclust’ function was 

used to convert the ‘agnes’ object into a ‘hclust’ object, and the ‘as.phylo’ function (part of 

the ‘ape’ R package) was used to convert this into a ‘phylo’ object. This ‘phylo’ object was 

visualized as a circular cluster dendrogram using the R package ‘ggtree’ (Yu et al., 2018). A 

specimen from China was used as an outlier for delineating clusters as it possessed a 

mitochondrial haplotype not detected in any other specimen as well as a rare nuclear 

haplotype observed only in one other specimen (Supplemental File S2). To assess the 

concordance between the epidemiologically assigned links and those assigned using the 

ensemble, the probability that any identified associations arose by random chance was 

determined. Briefly, the probability (P) value was calculated using a binomial distribution, 

the null probability that any two random specimens in the dataset will be linked using our 

method and, the total number of specimens with epidemiologically defined links 

(Supplemental File S1).
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RESULTS

Polymerase Chain Reaction and Sequence Analysis

Three SNP-rich loci were selected; one Mt locus designated as MSR and two Nu loci 

designated as 360i2 and 378, with amplicon sizes less than 1 kilobase pair (kb) and 

capturing between four and twenty SNPs (Table 1). The amplification and sequencing 

success rate for each of the three loci was greater than 90%. The success rate of sequencing 

all three loci for a given specimen was 74/88 (84%). The Mt MSR locus was the least 

diverse with five haplotypes detected. The Nu 378 locus was the most diverse and possessed 

the most intra-specimen heterozygosity, with ten haplotypes identified. Seven haplotypes 

were detected for the Nu 360i2 locus. The existence of several homozygous specimens for 

the Nu 360i2 and Nu 378 loci facilitated accurate unphasing of heterozygous specimens into 

two distinct haplotypes in most cases. Five specimens possessed a mixture of three 

confirmed Nu 378 haplotypes, one specimen contained a mixture of four Nu 378 haplotypes, 

and one specimen contained two Mt MSR haplotypes (Supplementary File S2). The 

sequencing results supported that the nuclear loci examined exist as one copy in the haploid 

C. cayetanensis genome as BLAST searches against these genomes had originally 

suggested. For example, at the 360i2 locus, specimens were identified that were 

homozygous for haplotypes 1, 2, 3, 4, 6 and 7, while nearly all other specimens had different 

combinations of these. Approximately 20% (17 out of 87) of specimens sequenced at the 

360i2 locus were homozygous, supporting that the heterozygosity observed in some 

chromatograms was due to the presence of different haploid genome copies in the specimen 

possessing different haplotypes. For the 378 locus, homozygous specimens were found for 

haplotypes 2, 3, 4 and 7 representing approximately 8% of the specimens (6 out of 80) that 

were sequenced at this locus. This data supports our original BLAST analysis of the C. 
cayetanensis genomes generated here, indicating that the 360i2 and 378 loci exist as one 

copy in each haploid genome.

Assignment of specimens to clusters using the ensemble

The 88 specimens genotyped in this study were divided into 16 genetic clusters using the 

ensemble (Figure 2), with a cutoff assigned at the node where the Chinese specimen split 

from its nearest neighbor (two specimens from Texas). To assess the performance of the 

ensemble in terms of the plausibility of its cluster assignments the 88 genotypes were 

represented as a barcode (Figure 3). Manual examination of the barcodes within each cluster 

indicated that the ensemble assigned rational distances based on the haplotype composition 

of each specimen (Figure 3). Some of the 88 specimens had an incomplete genotype due to 

amplification and or sequencing failures (Table 1, Figure 2). However, the algorithms 

underlying the ensemble were designed to accommodate incomplete datasets allowing all 

specimens to be assigned to a cluster. For instance, multiple attempts at PCR amplification 

of the Nu 378 locus failed for one of three repeat specimens from patient B yet this 

incompletely typed specimen was still linked to the other specimens from this patient using 

our method. The parasites within repeat fecal specimens from patients A and B were 

consistently assigned to the same respective clusters (Figure 2), suggesting that cross 

contamination between specimens was absent.
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Concordance of Genetic Clustering and Epidemiological Data

Nineteen instances occurred where any two specimens linked using the ensemble were also 

linked using epidemiological methods. The probability that these 19 concordant links arose 

by random chance was extremely low (P<0.0001). Additionally, given that repeat specimens 

from patients A and B shared a common source (i.e., they caused the same infections), the 

ensemble assigned 25 concordant linkages and the probability that these associations arose 

randomly was also low (raw P = 3.9×10−13). When the links assigned using the Bayesian 

and heuristic algorithms underpinning the ensemble were examined individually (repeat 

specimens from patients A and B considered), their concordance with the epidemiology was 

also unlikely to have arisen randomly (heuristic P=2.3×10−10, Bayesian P=2.7×10−8). 

However, the P-value obtained using the ensemble was the lowest.

For four of the eight epidemiologically defined outbreak clusters the ensemble-assigned 

links were fully corroborated by the epidemiological data. This included four cyclosporiasis 

cases linked to a local business in Texas (Figure 2, red). Sequencing failed at the 378 locus 

for one of these specimens yet the ensemble still linked this specimen to the other three. 

Four cyclosporiasis cases were linked to the Maine temporospatial cluster (Figure 2, green) 

and the ensemble-assigned links were also fully concordant. The cyclosporiasis patients 

associated with this epidemiological cluster came from neighboring counties of residence 

and their onset of illness fell within 13 days. These patients had each purchased the same 

produce item at one of two grocery store chains. The two cyclosporiasis patients linked to 

Texas restaurant-associated cluster 1 (Figure 2, gold) were also linked by the ensemble. The 

two patients fell ill one day apart and both had dined at same restaurant. The ensemble also 

linked two cyclosporiasis cases from South Carolina associated with a temporospatial 

outbreak cluster (Figure 2, gray). These patients shared the same county of residence and 

their illness onset dates fell within 7 days of each other. In all of these cases, manual 

examination of the specimens respective barcodes (Figure 3) supported that the links 

assigned were rational based on the haplotype composition of the specimens.

For two of the eight epidemiologically-defined outbreaks of cyclosporiasis, the ensemble 

assigned links that were partially concordant. Only three of seven cases associated with the 

Michigan event cluster were linked by the ensemble (Figure 2, blue). The foods consumed at 

this event were prepared in the same kitchen, though came from diverse sources. Patients 

were exposed via hotel restaurant dining, catered events and/or room service. Consequently, 

a single food vehicle could not be identified. Despite the lack of concordance with the 

epidemiology, the haplotype composition of these specimens indicates that the ensemble 

assigned rational links for all seven cases (Figure 3). For five cases linked to the Wisconsin 

restaurant-associated cluster (Figure 2, orange), the ensemble assigned links that were 

partially concordant with the epidemiology. These patients had dined at the same restaurant 

chain and their onsets of illness fell within nine days of each other. However, three of the 

five samples associated with this epidemiologically defined cluster had partial genotypes 

assigned to them due to sequencing failures.

For the specimens in two of the eight epidemiologically defined clusters, the ensemble 

detected no links. This includes the four specimens associated with the Texas restaurant 2 

cluster (Figure 2, purple), where the infections were assigned to four different groups by the 
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ensemble. The patients associated with this outbreak had dined at the same restaurant chain 

though in different cities, and their illness onset dates were up to 23 days apart. For the two 

cyclosporiasis patients that had their infections linked to the Mexican Event associated 

cluster (Figure 2, brown), the ensemble assigned their infections to different groups. These 

cyclosporiasis patients had spent one overlapping day at the same event. Despite the lack of 

concordance with the epidemiological data in some cases, the haplotype composition of the 

specimens allocated to each cluster suggests that the ensemble had nonetheless assigned 

plausible linkages (Figure 3).

DISCUSSION

Previous attempts to develop molecular typing tools for C. cayetanensis have proved difficult 

due to challenges in ascertaining cases, collecting specimens, and difficulties associated with 

PCR amplification and sequencing of target loci (Guo et al., 2016; Li et al., 2017). Like all 

apicomplexan parasites, C. cayetanensis possesses three discrete genomes: one nuclear, one 

mitochondrial, and a third contained within a vestigial plastid homologous to the 

chloroplast, called the apicoplast (Cinar et al., 2016; McFadden & Yeh, 2017). Adding to 

this complexity, the genome sequence of C. cayetanensis is relatively large (44 MB), so 

whole genome sequencing is not feasible for routine genotyping. Therefore, MLST 

represents the most viable solution for typing C. cayetanensis. However, as a consequence of 

the difficulties discussed above, no independently (i.e., epidemiologically) validated 

genotyping approaches have been developed for aiding cyclosporiasis outbreak 

investigations.

The use of phylogenetic inference to aid linkage of cyclosporiasis cases is confounded by 

the heterogeneous nature of infections which is likely attributable to the parasites sexual 

reproductive cycle. During this cycle, fusion of a macrogamete (1N) and a microgamete 

(1N) in the host gut produces a zygote that develops into an oocyst. Oocysts are shed in the 

hosts’ feces and only become infectious after sporulation; a process that takes approximately 

2 weeks (Smith et al., 1997). Fully sporulated oocysts possess two sporocysts, each 

containing two infective sporozoites that are haploid (1N). Sporozoites in an individual 

sporocyst are thought to be genetically identical based on studies of Eimeria (Shirley & 

Harvey, 1996), while the sporocysts in a single apicomplexan oocyst can be genetically 

distinct (Mzilahowa et al., 2007). Consequently, one apicomplexan oocyst can be 

heterozygous, possessing up to two alleles for any given locus so the number of sequence 

types detected between C. cayetanensis infections often varies depending on the locus 

examined (Supplementary File S2). In this study, approximately 20% of specimens were 

homozygous at the 360i2 locus, while approximately 8% were homozygous at the 378 locus. 

Not surprisingly, specimens homozygous at one nuclear locus were often heterozygous at 

the other and some specimens possessed three or four 378 haplotypes indicating infections 

of mixed genotypes, which required manual unphasing. For the mitochondrial locus, most 

specimens possessed a single haplotype with only one specimen possessing two haplotypes.

Examination of the haplotype composition of specimens within each ensemble-assigned 

cluster indicated that the groupings were plausible (Figure 3). Additionally, the 

epidemiological data corroborated a significant number of ensemble-assigned links and the 
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concordance between these methods was unlikely to have arisen by chance. We therefore 

suggest that the approach shows great promise as an aid for epidemiologic investigation of 

cyclosporiasis outbreaks.

However, the underlying algorithms have some limitations and are based on several 

assumptions that should be considered. For instance, the quality of the links assigned relies 

on the size of the dataset. Preliminary analyses have shown that because the underlying 

algorithms rely on frequencies, the approach performs better on larger datasets. It is also 

important to highlight that the cluster dendrograms generated using this approach are not 

akin to a genetic distance, but more closely represent the probability of relatedness based on 

a set of frequencies. A single C. cayetanensis infection represents a complex mixture of 

haplotypes and the precise frequency of these cannot be known from this type of data. 

Consequently, the probabilities calculated as part of the ensemble are based on the frequency 

of samples possessing each haplotype rather than the frequency of each haplotype in the 

population. Therefore, both algorithms substitute the frequency of samples possessing each 

haplotype in place of a true haplotype frequency, which is less accurate though cannot be 

avoided using the data generated here. Furthermore, the ensemble may be prone to sampling 

bias, as the links assigned may be skewed in circumstances where genotypes that are very 

common in the true population are rare in the study cohort. Such an occurrence could lead to 

specimens being strongly linked by the ensemble even though their genotype is actually 

common. In circumstances like this the closeness of a relationship may be over-estimated.

Possibly the most important limitation of this strategy (also a limitation of the laboratory 

methods) is that only a minor portion of the parasites’ genome is sampled, meaning the 

algorithms attempt to extrapolate genetic relationships from limited data. Our three markers 

resolved the 88 specimens analyzed into 16 clusters (Figure 2), though improved granularity 

may be achieved with the inclusion of additional typing markers to our panel. We also 

propose that the use of deep sequencing technologies in place of Sanger would almost 

certainly improve accuracy by increasing the number of haplotypes detected within each 

specimen. Additionally, the similarity-based classification algorithms underpinning the 

ensemble could be modified to accommodate deep sequencing data, such that the 

normalized read counts might be used in place of a haplotype frequency.

The similarity-based classification algorithms underlying the ensemble were designed to 

accommodate partial typing datasets (Supplementary file S1), because amplification and 

sequencing are not always successful for every specimen. Nonetheless, the amplification and 

sequencing success rate for this scheme (84%) is superior to previously described 

approaches (~50%) (Guo et al., 2016; Li et al., 2017) despite most specimens used here 

being several years old. In any case, the results suggest that the ensemble assigns plausible 

links in the event of missing data. For example, sequencing of the 378 locus failed for a 

repeat specimen from Patient B, yet the specimen was still linked closely by the ensemble to 

the other repeat specimens from this same patient. Similarly, one of four specimens linked to 

the local business cluster from Texas had missing data for locus 378 (Figure 2, red), yet was 

still linked to the other specimens from this epidemiological cluster. While retention of 

samples with missing data is not ideal, this feature of the ensemble reduces data wastage and 

means that specimens with a partial genotype remain useful.
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This approach linked specimens associated with four epidemiologically-defined clusters 

with full concordance. This included specimens associated with the South Carolina 

temporospatial cluster, the Maine temporospatial cluster, the Texas local business-associated 

cluster and the cluster associated with Restaurant 1. The approach linked only three of seven 

cases from the Michigan event associated cluster (Figure 3, cluster 9), though despite this 

lack of concordance, the four unlinked specimens (PA1462, MI1436, MI1431, MI1430), are 

genetically distinct from each other at the loci sequenced (Figure 3). Similarly, for the 

Restaurant 2 cluster and the cluster associated with the Mexican event, there was no 

concordance between the epidemiological data and the ensemble-assigned links. However, 

the haplotype composition of each of these specimens also suggested that they were not 

closely related (Figure 3). In fact, one specimen from the Mexican retreat associated cluster 

possessed a 360i2 haplotype not observed in any other specimen in the cohort and was 

assigned to its own unique cluster by the ensemble (Figure 3, cluster 16). Based on this data, 

we conclude that the lack of concordance between the epidemiology and the ensemble-

assigned links is not related to the performance of the algorithm. We note however, that in 

the absence of a reference C. cayetanensis genotyping method, epidemiological linkages 

remain the only method to assess the performance of this approach.

Despite its limitations, the ensemble assigned specimens to plausible clusters of genetically 

related infections based on their complex haplotype composition. These relationships were 

corroborated by a significant number of epidemiological linkages suggesting the ensemble’s 

utility for aiding epidemiological trace-back and case-linkage investigations.

ACCESSION NUMBERS

The Genbank BioSpecimen numbers for all published C. cayetanensis genomes are listed in 

Table 1. The sequence of each haplotype from the 378, 360i2 and MSR loci are available in 

GenBank under Accession Numbers MH185772 to MH185793.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Workflow for selection of Cyclospora cayetanensis typing markers
Raw genome sequence data generated on the Illumina MiSeq platform were assessed for 

quality using FASTQC. AdaptorRemoval v2.1.7 (Schubert et al., 2016) was used to remove 

adaptor sequences from reads and to merge overlapping paired reads into consensus 

sequences. SPAades v3.9.0 (Bankevich et al., 2012) was used to de novo assemble the reads. 

During the assembly cleaning process, contigs derived from contaminating (Contam.) 

prokaryotic human gut flora were removed using BBMap (http://sourceforge.net/projects/

bbmap/). The assemblies were assessed for quality using QUAST v4.3 (Gurevich et al., 
2013) before and after the cleaning phase. Contigs with 60 times coverage, 3000 base pairs 

(bp) long and with coding regions identified using GeneMark-ES v4.33 (Borodovsky & 

Lomsadze, 2011), were retained as part of the core genome. Single nucleotide 

polymorphisms (SNPs) were detected across the core genome assemblies using kSNP 

v3.021 (Gardner et al., 2015) and this information was used to identify high-entropy 

genomic loci. Genomic regions containing high confidence SNPs (i.e., those SNPs within 

genomic regions of the highest coverage) occurring within SNP-dense regions (i.e., where 

several informative SNPs exist within a genomic region of less than 1 kilobase pair in size), 

were identified as candidate typing markers for validation by PCR amplification and Sanger 

sequencing. The markers with the highest amplification and sequencing success rate were 

considered ideal candidates for C. cayetanensis typing, and were PCR amplified and 

sequenced from stool specimens provided by a diverse range of patients. The resulting 

sequences were then subjected to typing.

Barratt et al. Page 15

Parasitology. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://sourceforge.net/projects/bbmap/
http://sourceforge.net/projects/bbmap/


Figure 2. Cluster Dendrogram Generated from the Ensemble Distance Matrix
Our ensemble of two similarity-based classification algorithms resolved the C. cayetanensis 
infections from 88 fecal specimens into sixteen clusters (different branch colors). Clusters 

were delineated by cutting the tree at the node indicating the separation of the Chinese 

sample (CHN_HEN01) from its nearest neighbor. The specimen names are shaded in colors 

according to their epidemiological linkage. Unshaded specimen names represent sporadic or 

unlinked cases of cyclosporiasis. Specimen identity codes begin with a two letter state 

abbreviation (except for Jakarta, Indonesia; JK), followed by two numbers indicating the 

year, and ending a unique identifier assigned to that specimen (2 to 3 digits). The specimen 

from China (CHN_HEN01) follows a different naming convention as sequence data from 

this specimen had been submitted to GenBank previously by different investigators 

(GenBank accession: NW_019211453).
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Figure 3. The haplotype composition of each specimen genotyped in this study represented as a 
barcode
The 88 specimens in the study cohort were assigned to 16 distinct clusters by the ensemble, 

with cluster assignments shown on the right hand side of each panel. These cluster 

assignments were made based on the haplotype composition of each sample, with the loci 

and their respective haplotype numbers shown along the two top rows. Boxes are shaded 

black if the corresponding haplotype was detected in a specimen. Specimen names are listed 

in the far left column of each panel. Rows are shaded gray if sequencing was unsuccessful 

for a given marker. This figure was generated to graphically represent the groupings 

assigned by the ensemble when presented with a set of complex genotyping data.
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